
Getting Started
on the Compiler Project

Your first step is to pick an implementation language.
Here are the modules you will write:

• A scanner, which reads a text file containing a
BPL program. It reads this file character by
character. The scanner has a variable that
holds the current token (one symbol of the
program, such as a variable name, a keyword
such as while, a grammatical symbol such as a
semicolon, a token representing the end of the
input file, etc.). The scanner also has a function
getNextToken() which reads the file until it can
update the token variable.

• A parser, which uses the grammar and the
getNextToken() function to build a tree that
represents the program.

• A type-checker, which makes 2 passes
through the parse tree. A top-down pass
assigns to every identifier a pointer back to
the place in the parse tree where that
identifier was declared. A bottom-up pass
then assigns a type to every expression.

• A code generator, which makes a pass through
the parse tree and builds up a file of assembly
language code representing the program.

The language you choose for implementing your
compiler needs to allow you to read a text file
character by character, output a text file, and work
with tree-like structures and pointers.

If you write your compiler in Java and include only
enough documentation to remind you of what the
code does, the whole project is about 3000 lines
(roughly 60 pages) of code. I suggest using the
implementation language you are most comfortable
with. I do not suggest using this project to learn a
new language, though that has been done
successfully in the past.

Reasonable choices for implementation languages
include Java, Python, C, and C++.

You are welcome to use other languages, but if you
choose to do so, I want to know about it THIS
WEEK.

Each of the assignments describes the module you need to
write for the next stage of the compiler, and also an
application program that will allow me to see that your
module works.

I would prefer that you set this up so that I type
 bpl foo.bpl
(where foo.bpl is a text file with bpl code) and the
appropriate application program is run. With the final
module
 bpl foo.bpl
should produce an assembly-language file foo.s
which I can assemble and run with
 as foo.s
 a.out

